Sequential preparation of two different PET radiotracers employing the Advion NanoTek synthesis system

Thomas Collier1, George Kabalka2, Murthy Akula2

1Advion Biosciences, Inc., Ithaca, NY,
2Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN
Financial Disclosure

Why do we want to do a Back to Back Synthesis?

To prove that at least two tracers could be made without impacting yield, purity and specific activity

- we chose FLT and FMISO as test tracers
 • these compounds use the most common radiosynthesis methodologies:
 » Incorporation of Fluoride
 » Hydrolysis to remove protecting groups
 » HPLC purification
[F-18]FLT and FMISO

Radiosynthesis

3-N-Boc-5’-O-dimethoxytrityl-3’-fluorothymidine

3-N-Boc-5’-O-dimethoxytrityl-3-O-nosyl-thymidine

1-Fluoro-3-(2-nitro-imidazol-1-yl)-propan-2-ol (FMISO)
System Components

Base Module.
Stores and delivers cold reagents.

Reactor module.
Isotope delivery and reaction.

Concentrator Module
Traps and concentrates F-18.

Distribution valves

Syringe pumps. 48,000 steps

Pressure sensors

Four independent reactors

Temperature controllers

Heated vial
Dominant effects in Microfluidics

- Faster thermal diffusion
- Laminar flow (Low Reynolds number)
- Surface forces (Capillary phenomenon)
- Liquid evaporation - smaller volume so evaporation has a larger effect
- Gas bubbles - have effects on compressibility
Vapour Pressure

Pressure of Common Solvents

Temperature (ºC)

- Water
- Acetonitrile
- DMSO
- Dimethylformamide
Discovery Mode

• In discovery mode a small aliquot (10-20 µl) from the original solution of the radioisotope and precursor is mixed in the reactor.
 • This allows the testing of 10-30* different reaction conditions, such as
 • reaction temperature,
 • flow rate,
 • pressure,
 • reagent ratios.

• This can also be done for 2-step reaction.

* The number of reactions are dependent on the volume of solutions loaded to the loops and the size of the bolus used in the reactions
E-mail info@advion.com to request a copy of the animation.
Optimization of [F-18] Incorporation

- 48 Individual Run Experiments
 Precursor Concentration = 20 mg/ml,
 450 µl / run = 9 mg of precursor / run

% Incorporation vs temperature
Reactor Flow Rate = 40 µl/min

170°C study repeated to determine repeatability
Optimization of [F-18] Incorporation

Precursor Concentration = 20 mg/ml, 450 µl / run = 9 mg of precursor / run

Effect of Reactor Flowrate on % Incorporation of [F-18] Fluoride

![Bar chart showing the effect of reactor flowrate on % incorporation of [F-18] fluoride.](chart.png)
Optimization of [F-18] Incorporation

Precursor Concentration varied from 5 to 40 mg/ml, Flow rate through reactor = 200 µl/min, Reactor residence time ~5 seconds

% Incorporation of [F-18] Fluoride vs Precursor Concentration

40 mg/ml study repeated to determine repeatability
Individual Conditions for [F-18]FLT and FMISO

Optimum conditions for FLT

- Reactor Conditions
 - 150-180°C, 150-200 µl/min, 100µm X 2 m

- Reagent Concentrations
 - Precursor 15-40 mg/ml (6-16 mg/run)
 - 2 N HCl, 95°C, 6 minutes
 - 3M NaOAc, 2 minutes, RT

Optimum conditions for FMISO

- Reactor Conditions
 - 150-180°C, 150-200 µl/min, 100µm X 2 m

- Reagent Concentrations
 - Precursor 5-10 mg/ml (2-4 mg/ run)
 - 1 N HCl, 100°C, 1 minutes
 - 1 N NaOH, 2 minutes, RT
Requirements for Back to Back Synthesis

Each reaction occurs in an independent flow path

- Fluoride is split into 2 independent flow paths and mixed with precursor
- Reaction occurs in two different reactors
- Hydrolysis occurs in two separate reaction vials
- HPLC purification occurs on two separate HPLC columns
 - Column selector chooses correct column
 - One column for each compound
- HPLC injector and all associated flow paths are cleaned automatically between tracers
- System can be cleaned fully between runs and low carryover between runs
Modifications to Standard NanoTek
Back to Back Radiosynthesis

• To Perform a B2B radiosynthesis

 – The user must install prior to starting the Radiosynthesis
 • Kryptofix / carbonate solution and fluoride trap on Concentrator 1
 • 2N Hydrochloric Acid, 3M Sodium Acetate, 1N Sodium Hydroxide, Water
 • FLT precursor on Pump 1
 • FMISO precursor on Pump 2
 • HPLC solvents (70% ethanol / water, 10% ethanol / water, 5% ethanol / water, 8% ethanol / phosphate buffered saline

 – The system will prompt the User for
 • When [F-18]Fluoride is ready and has been transferred to hotcell
 • To inject the crude [F-18]FLT on to the HPLC and to collect the pure [F-18]FLT
 • To inject the crude [F-18]FMISO on to the HPLC and to collect the pure [F-18]FMISO
Purification of [F-18]FLT

As read on the Nanotek system from analogue inputs
Results of B2B Radiosynthesis

B2B Yield when compared with independent reactions (Non-decay corrected yields)

- FLT = 20 ± 3% vs 18.9 ± 3% (B2B)
- FMISO = 40 ± 5% vs 38 ± 6% (B2B)

Specific Activity >2 Ci/µmol

Runs performed over the range of 50 mCi to 1 Ci

Analysis of the solutions for radioactive and chemical carryover.

The decay corrected radioactive carryover of

- 0.065% for FLT and 0.031% for FMISO

All other peaks attributable to the chemical carryover resulted in

- 0.07% for FLT and 0.09% for FMISO
Conclusion

- Two radiotracers were prepared sequentially in
 - Reasonable yield
 - High purity (>99%)
 - No impact on specific activity
 - Tested to a starting activity of 1 Ci
 - System was able to be cleaned with <0.1% carryover
 - Minimum interaction from the end user

Acknowledgements

- Molecular Imaging and Translational Research Program (UTMCK)
- Robert H. Cole Research Foundation
- Advion BioSystems