Sequential preparation of two different PET radiotracers employing the Advion NanoTek synthesis system

Thomas Collier¹, George Kabalka², Murthy Akula²

¹Advion Biosciences, Inc., Ithaca, NY,

²Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN

Financial Disclosure

T. Lee Collier- Employee - Advion BioSystems Inc.

Why do we want to do a Back to Back Synthesis?

To prove that at least two tracers could be made without impacting yield, purity and specific activity

- we chose FLT and FMISO as test tracers
 - these compounds use the most common radiosynthesis methodologies:
 - » Incorporation of Fluoride
 - » Hydrolysis to remove protecting groups
 - » HPLC purification

NO₂

NITTP

System Components

Base Module. Stores and delivers cold reagents. Reactor module. Isotope delivery and reaction. Concentrator Module Traps and concentrates F-18.

Dominant effects in Microfluidics

- Faster thermal diffusion
- Laminar flow (Low Reynolds number)
- Surface forces (Capillary phenomenon)
- Liquid evaporation- smaller volume so evaporation has a larger effect
- Gas bubbles have effects on compressibility

Vapour Pressure

Pressure of Common Solvents

Discovery Mode

- In discovery mode a small aliquot (10-20 µl) from the original solution of of the radioisotope and precursor is mixed in the reactor.
 - This allows the testing of 10-30* different reaction conditions, such as
 - reaction temperature,
 - flow rate,
 - pressure,
 - reagent ratios.
- This can also be done for 2-step reaction.

* The number of reactions are dependent on the volume of solutions loaded to the loops and the size of the bolus used in the reactions

Optimization of [F-18]Incorporation

•48 Individual Run Experiments

Precursor Concentration = 20 mg/ml, 450 µl / run = 9 mg of precursor / run

% Incorporation vs temperature Reactor Flow Rate = 40 µl/min

Optimization of [F-18]Incorporation

Precursor Concentration = 20 mg/ml, 450 µl / run = 9 mg of precursor / run

Effect of Reactor Flowrate on % Incorporation of [F-18] Fluoride

Reactor Flow rate (µl/min)

Optimization of [F-18]Incorporation

Precursor Concentration varied from 5 to 40 mg/ml, Flow rate through reactor = 200 μl/min Reactor residence time ~5 seconds

% Incorporation of [F-18] Fluoride vs Precursor Concentration

Individual Conditions for [F-18]FLT and FMISO

Optimum conditions for FLT

- Reactor Conditions
 - 150-180°C, 150-200 μl/min, 100μm X 2 m
- Reagent Concentrations
 - Precursor 15-40 mg/ml (6-16 mg/run)
 - 2 N HCl, 95°C, 6 minutes
 - 3M NaOAc, 2 minutes, RT
- Optimum conditions for FMISO
 - Reactor Conditions
 - 150-180°C, 150-200 $\mu l/min$, 100 μm X 2 m
 - Reagent Concentrations
 - Precursor 5-10 mg/ml (2-4 mg/ run)
 - 1 N HCl, 100°C, 1 minutes
 - 1 N NaOH, 2 minutes, RT

Requirements for Back to Back Synthesis

Each reaction occurs in an independent flow path

- Fluoride is split in to 2 independent flow paths and mixed with precursor
- Reaction occurs in two different reactors
- Hydrolysis occurs in two separate reaction vials
- HPLC purification occurs on two separate HPLC columns
 - Column selector chooses correct column
 - One column for each compound
- HPLC injector and all associated flow paths are cleaned automatically between tracers
- System can be cleaned fully between runs and low carryover between runs

Modifications to Standard NanoTek

Back to Back Radiosynthesis

• To Perform a B2B radiosythesis

- The user must install prior to starting the Radiosynthesis
 - Kryptofix / carbonate solution and fluoride trap on Concentrator 1
 - 2N Hydrochloric Acid, 3M Sodium Acetate, 1N Sodium Hydroxide, Water
 - FLT precursor on Pump 1
 - FMISO precursor on Pump 2
 - HPLC solvents (70% ethanol / water, 10% ethanol / water, 5% ethanol / water, 8% ethanol / phosphate buffered saline

- The system will prompt the User for

- When [F-18]Fluoride is ready and has been transferred to hotcell
- To inject the crude [F-18]FLT on to the HPLC and to collect the pure [F-18]FLT
- To inject the crude [F-18]FMISO on to the HPLC and to collect the pure [F-18]FMISO

Purification of [F-18]FLT

As read on the Nanotek system from analogue inputs

Results of B2B Radiosynthesis

B2B Yield when compared with independent reactions (Non-decay corrected yields) $FLT = 20 \pm 3\%$ vs $18.9 \pm 3\%$ (B2B) $FMISO = 40 \pm 5\%$ vs $38 \pm 6\%$ (B2B)

> Specific Activity >2 Ci/µmol Runs performed over the range of 50 mCi to 1 Ci

Analysis of the solutions for radioactive and chemical carryover.

The decay corrected radioactive carryover of 0.065% for FLT and 0.031% for FMISO All other peaks attributable to the chemical carryover resulted in 0.07% for FLT and 0.09% for FMISO

Conclusion

- Two radiotracers were prepared sequentially in
 - Reasonable yield
 - High purity (>99%)
 - No impact on specific activity
 - Tested to a starting activity of 1 Ci
 - System was able to be cleaned with <0.1% carryover
 - Minimum interaction from the end user
 Acknowledgements
 - Molecular Imaging and Translational Research Program (UTMCK)
 - Robert H. Cole Research Foundation
 - Advion BioSystems