Identification of Phosphorylation Sites in α-Casein

Using Chip-based Nanoelectrospray with Automated Data-Dependent Neutral Loss Mass Spectrometry

Advion BioSciences, Inc. (Ithaca, NY) has demonstrated the use of the NanoMate®100, combined with an ion trap mass spectrometer, to identify phosphorylation sites of α-casein using data-dependant scanning followed by automatically triggered neutral loss mapping. The NanoMate 100 is an automated chip-based nanoelectrospray ionization system (nanoESI) that provides extended analysis times to detect and to characterize phosphopeptides.

Advantages

- Extended acquisition time for MS/MS analysis with automated neutral loss mapping in a single analysis for increased information content
- Excellent spray stability for maximum sensitivity
- Automated chip-based nanoelectrospray enables one-time spray optimization for analysis of 96 samples
- Microfabrication enables reproducible spray from laboratory to laboratory
- Soft ionization technique
- Ability to save unused sample

Reversible protein phosphorylation plays a pivotal role in many regulatory mechanisms such as metabolism, cell division, cell growth and cell differentiation. Knowledge of the residues being phosphorylated in a protein can provide insight into the mechanisms of regulation. This work serves to demonstrate the the NanoMate and LTQ™ as a sensitive, reproducible and stable method to identify phosphorylation sites of bovine α-casein.

Method

α-casein (Sigma, St. Louis, MO) was dissolved in 50 mM ammonium bicarbonate pH 7.8 at 1 mg/mL. Trypsin, in a 1 µg/µL stock solution, was then added to the solution at 1:60 (w/w). Digestions were performed at 37 °C for 16 hours and stopped by the addition of 0.1% (v/v) acetic acid. The digests were stored at -70 °C.

Calf intestinal phosphatase (CIP) (Biolabs, Boston, MA) was dialyzed against 20 mM ammonium bicarbonate pH 7.8 overnight at 4º C using Slide-A-Lyzer Mini Units from Pierce (Rockford, IL). Four units of dialyzed CIP (8 units/mL) were added to 10 mL of the above digests and incubated at 37º C for 2 hours. The CIP treated digests were stored at 70º C until use.

Chip-based nanoESI/MS Analytical Conditions

- **Analyte:** Trypsin digest of bovine α-casein
- **Calf intestinal phosphatase (CIP)** was used for treatment of the α-casein digest
- **Solvent:** 50% Methanol with 0.1% acetic acid in water
- **Sample Concentration:** 50 and 100 fmol/µL α-casein
- **Sample Volume:** 5µL

NanoMate 100 Conditions

- Approximate Flow Rate: 100 nL/ minute
- Spray Voltage: 1.5 kV positive ion mode
- Spray Pressure: 0.25 psi

Finnigan LTQ™ Conditions

- **Acquisition Time:** 5 minutes
- **Capillary temperature:** 150 °C
- **Normalized collision energy:** 25 %
- **Maximum ion collection time:** 50 ms
- **Number of microscans:** 2-3

Figure 1 - MS spectra of α-casein tryptic digests before and after CIP treatment

CIP treatment was used for the α-casein digests to identify the T₈ phosphopeptide containing five phosphogroups that failed to be detected in the full scan positive ion mass spectrum.
Summary

The NanoMate 100 system combined with the Finnigan LTQ is an effective tool to rapidly and accurately identify peptides containing multiple phosphorylation sites. The system provides increased time and sensitivity needed to complete MS3 analysis using minimum sample quantities.