Scientific Innovation Through Integration

Implementation of a spatial metabolomics approach for exploring interactions within a tripartite plantfungus-cyanobacterium system

Dušan Veličković¹, Alyssa A. Carrell², Rosalie K. Chu¹, Malak M. Tfaily¹, Dale Pelletier³, Samuel M. D. Seaver⁴ Mathew Thomas¹, Ljiljana Paša-Tolić¹, David J. Weston^{2,3} <u>Christopher R. Anderfon¹</u>

¹Pacific Northwest National Laboratory, Richland, WA
²Department of Biology, Duke University, Durham, NC, USA
³ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
⁴ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

EMS

Proudly Operated by Battelle Since 1965

Peatlands and their global influence

DOE SPRUCE site

Large-scale peatbog warming and CO₂ manipulation studies

Peatlands: 3% of the Earth's land surface Store ~25% of terrestrial C

Sphagnum (moss) is the foundational species of this ecosystem

What is the role of the members? How will this interaction be impacted by climate perturbations?

Peatland-related model system of interest

Yang et al., J. Bacteriol. **2012**, 194, 6023

- Inoculated on N-free media agar
- Excised regions and explored the metabolic exchanges within the tripartite using a multimodal MSI approach

Multimodal MSI methodology employed

Improved MALDI sample preparation using an automated sprayer

Yang et al., J. Bacteriol. 2012, 194, 6023

Anderton et al., JASMS 2016, 27, 556-559

MALDI-FTICR MSI

Correlative LESA-FT-MSI

LESA sampling configuration, post-MALDI MSI

1394 sample-related ions detected 104 ion correlating with MALDI-MSI list *+33 more sample-related peaks detectable in MALDI-MSI*

LESA MS_n increases confidence in molecular identification

Detection of inversion of growth factors

Providing spatial confirmation to detected metabolites

Disaccharide (m/z 365.1052)

Detection of distinctive sugars originating from different species

Lactose or Isomaltose 1-4 or 1-6 glycosidic linkage, need MS₃ to differentiate

Kojibiose

High spatial resolution FTICR-SIMS

beam desorption processes

Revealing molecules invisible to MALDI

high Iow

FTICR-SIMS

Highest lateral resolution, minimal sample preparation

Higher lateral resolution, no signal

Summary

- Multimodal MSI provided insight into metabolic exchanges within the peat moss ecosystems
 - Illuminating mechanisms related to linkages in carbon and nitrogen cycling (e.g., sugar and amino acid metabolism)
 - Provided evidence of mode of action of members in simplified community
- LESA-MS_n proved to be a powerful complementary MSI modality, providing an orthogonal analysis method capable of providing increased confidence in molecular identification <u>and</u> spatial distribution.