

Histology Directed Liquid Surface Extractions Coupled Directly to Liquid Chromatography for Improving Identification **Strategies in Advanced IMS Applications**

Overview

- The unambiguous identification of proteins detected in a matrix-assisted laser desorption/ionization mass imaging mass spectrometry (IMS) experiment is a challenge
- Identifications are most commonly made with an offline experiment following the image
- Spatially directed liquid surface extractions using a glass capillary (LESA© plus LC) coupled directly to high performance liquid chromatography (HPLC) allow the user to target discrete regions of for nanoESI.
- In this work bottom-up and top-down MS were used to investigate the efficiency of a LESA extraction as well as to define the robustness and reproducibility of the extraction.
- The combination of online and offline HPLC using liquid surface extractions allows for a new approach to generate robust, high throughput, reproducible extractions for the identification of proteins through top-down and bottom-up approaches.

Background

The ability to identify proteins in an IMS experiment is challenging, limiting the ability to frame protein imaging results in biological context. Due to the limited fragmentation efficiency of MALDI generated proteins ions, a number of approaches have been established leveraging bottom-up or top-down LC-MS/MS. These include tissue homogenizations and liquid surface extraction methodologies from seria sections of the tissue of interest.

The most commonly employed method of making offline protein identifications in an IMS workflow is completed by homogenizing a serial section of tissue followed by enzymatic digestion; subjecting the peptides to bottom-up methodologies. Although efficient, many proteins are still left unidentified in an image due to the inability to thoroughly match peptides to intact proteins from the loss of labile PTM's in the CID process. Other techniques have been introduced, such as peptide mass fingerprinting from digested tissue surfaces and trypsin-loaded hydrogels, but they still suffer from the same difficulty in matching identifications.

Liquid extraction surface analysis (LESA©) uses small volumes of solvent dispensed from a robotic mandrel to generate small, liquid micro-junctions between the tissue, liquid, and mandrel; allowing for the diffusion of analytes into the solvent. Top-down LC-MS/MS of LESA extractions from tissue sections has been shown to detect approximately 50-100 proteins with minimal sample preparation from manually pipetted extracts. This methodology is unique in that it allows the user to retain the spatial information gained during an IMS experiment.¹

Herein we describe the use of an enhanced LESA© plus LC extraction with the use of a glass capillary that is coupled directly to HPLC. Through the use of a 150 µm i.d. capillary we are able to generate an increased droplet resolution on tissue using various solvent compositions, as well as generate data that is both robust and reproducible across a given experiment; showing a great improvement from our previous methods using manual pipetting. Lastly, the extraction is injected online to LC-MS in order to provide a new means to generate a higher-throughput means to gather spatially relevant protein identifications.

awed and shaved on dry at 12 µm, at -20 °C

using a Thermo Cryostat NX70

onto conductive indium tin oxide slides and were either

Daniel.Ryan@Vanderbilt.Edu

Daniel Ryan^{1, 2}; David Nei^{2, 3}; Boone Prentice^{2, 3}; Jeffrey Spraggins^{1, 2, 3}; Richard Caprioli^{1, 2, 3, 4, 5} ¹Department of Chemistry, Vanderbilt University, Nashville, TN; ²Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN; ³Department of Biochemistry, Vanderbilt University, Nashville, TN; ⁴Department of Pharmacology, Vanderbilt University, Nashville, TN; ⁵Department of Medicine, Vanderbilt University, Nashville, TN

resolution

5 mm

- spectra where then manually interpreted.
- Online LC-MS was coupled directly to a liquid surface extraction from mouse pup.
- Future work entails the use of top-down fragmentation techniques such as ETD and CID to generate fragmentation data from online LC-MS/MS.

- Schey, K. L.; Anderson, D. M.; Rose, K. L. Analytical Chemistry, 2013, 85 (14), 6767-6774.
- Rizzo, D. G.; Prentice, B. M.; Moore, J. L.; Norris, J. L.; Caprioli, C. M. Analytical Chemistry, 2017, 89, 2948-2955.